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Abstract. In the two-dimensional isotropic parabolic potential barrier V (x, y) = V0 −mγ 2(x2 +
y2)/2, though it is a model of an unstable system in quantum mechanics, we can obtain the stationary
states corresponding to the real energy eigenvalue V0. Further, they are infinitely degenerate. For
the first few eigenstates, we will find the stationary flows round a right angle that are expressed
by the complex velocity potentials W = ±γ z2/2. From the hydrodynamical point of view vortex
structures for the general solutions are also studied.

1. Introduction

It is well known that the two-dimensional harmonic oscillator (2D HO) is equivalent to the
dynamical system consisting of two independent one-dimensional harmonic oscillators (1D
HOs)—the energy eigenvalues of the 2D HO are given by the sum of the energy eigenvalues
of the 1D HOs and the eigenstates of the system are given by the product of the eigenstates of
the 1D HOs. When degenerate eigenstates of the 2D HO are superposed with suitable weights,
the new states will be the eigenstates of orbital angular momentum. These results were studied
a long time ago by Dirac [1].

In this paper we will investigate the two-dimensional parabolic potential barrier (2D PPB)
defined by the potential energyV (x, y) = V0−mγ 2(x2+y2)/2, which is a model of an unstable
system in quantum mechanics, on the same lines as the 2D HO. This model is equivalent to the
dynamical system consisting of two independent one-dimensional parabolic potential barriers
(1D PPBs). Note that the 1D PPB has been studied by various authors [2–12]. Discussions
similar to the present model were performed by the method of complex scaling [13,14] and also
in terms of the complex harmonic oscillator [15, 16]. In the 1D PPB defined by the potential
energy V (x) = V0/2 − mγ 2x2/2, we have shown that the energy eigenvalues are complex
numbers and the corresponding eigenfunctions are expressible in terms of the generalized
functions of a Gel’fand triplet [11,12]. It should be noticed that all energy eigenvalues appear
in the pairs of conjugate complexes V0/2 ∓ i(n + 1/2)�γ (n a non-negative integer), which,
respectively, correspond to the resonance states of decay and growth.

In two dimensions, however, the exact solutions of the eigenvalue problem have much
more variety. In section 3 we will see that they are separated into four types. Two of the
four types (in section 3.1), that are expressed by the generalized eigenfunctions belonging to
complex (not real) energy eigenvalues, represent diverging and converging flows. In these
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two types the solutions will also be the eigenstates of orbital angular momentum. In the other
two of the four types (in section 3.2) all the solutions are infinitely degenerate and involve the
special solutions with the real energy eigenvalue V0, which are stationary and do not grow or
decay with time. It is a striking result that the eigenstates of the 2D PPB can involve stationary
states, while no such state exists in the 1D PPB. This situation may be well understood in
comparison with the results of classical mechanics for the 2D PPB. That is to say, for the 1D
PPB, the Newton equation of motion is ẍ(t) = γ 2x(t) and then the fundamental solutions give
x±(t) = x±e±γ t , where x± are real numbers. These solutions, x+(t) and x−(t), respectively,
represent the diverging solution (tends to infinity) and the converging one (tends to zero).
In two dimensions we find two different orbits expressed by x±(t)/y±(t) = constant and
x±(t)y∓(t) = constant. Now it is transparent that the former two of the four types of quantum
solution of the 2D PPB correspond to the linear orbits x±(t)/y±(t) = constant and the latter
two involving the stationary states to the hyperbolic orbits x±(t)y∓(t) = constant. We may say
that linear orbits such that x±(t) and y±(t) go toward the origin as t → ∓∞ correspond to the
states of resonance in quantum mechanics, whereas the hyperbolic orbits which cannot pass
through the origin correspond to the scattering states in collision problems. We may expect
that, even though the time-independent eigenfunctions expressed by the generalized functions
of a Gel’fand triplet are not normalizable, such as the free particle or the stationary states
of collision problems, we can obtain physical results in terms of the ratios of the probability
densities or the probability currents in the initial and final states. The probability densityρ(t, r)
and the probability current j(t, r) of a state ψ(t, r) in non-relativistic quantum mechanics are
defined by [17–19]

ρ(t, r) ≡ |ψ(t, r)|2 (1.1)

j(t, r) ≡ Re [ψ(t, r)∗(−i�∇)ψ(t, r)]/m (1.2)

where m is the mass of the particle. They satisfy the equation of continuity

∂ρ

∂t
+ ∇ · j = 0. (1.3)

However, these ρ and j are independent of the time t when the considered state is a closed
state of the stable system (e.g. the HO, the hydrogen atom) or a stationary state (e.g. the free
particle). For a non-stationary state of the PPB, on the other hand, the probability density (1.1)
and the probability current (1.2) are not simple, i.e. they generally depend on the time t

and the coordinate r. We therefore need some further study to describe the stationary and
non-stationary flows of the 2D PPB. We will see that some kind of velocity introduced in a
hydrodynamical formulation of quantum mechanics can be an interesting physical quantity.

Another difference will be seen in the infinite degeneracy of the stationary states in
quantum mechanics. This property enable us to write the states in many various expressions
in terms of superposition of the infinitely degenerate states. In section 4.1 we will actually
see that quantized vortices, which connect the nodal singularities of the wavefunction, appear.
Furthermore, we shall also show that complex velocity potentials are useful for a few stationary
flows in section 4.2. These considerations indicate that the hydrodynamical approach will give
us an interesting insight for understanding of our results.

The connection between hydrodynamics and quantum mechanics was vigorously
investigated in the earlier stage of the development of quantum mechanics [20–27]†. From the
chemical side the connection between the nodes of the wavefunction and quantized vortices
was carefully examined by Hirschfelder [28–31]. A review article including these works is
given by [32]. It is also noticed that such a velocity is still useful in present-day quantum

† This was pointed out to us by R Jackiw.
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physics [33–35]. A brief review of the hydrodynamical formulation of quantum mechanics is
presented in section 2. The vortex structures of the 2D PPB flows solved in section 3.1 will be
studied in section 4.1. In section 4.2 we shall find that, for the first few solutions of section 3.2,
the quantum velocities are solenoidal, so the corresponding complex velocity potentials must
exist. These complex velocity potentials for the 2D PPB describe the flows round a right angle.

2. Velocities, vortices and complex velocity potentials in quantum mechanics

We start out with the equations of hydrodynamics, consisting of Euler’s equation of continuity
for the density and velocity of a fluid and so on. Let us try to introduce a velocity which will
be the analogue of the hydrodynamical one. In hydrodynamics [36–38], the fluid at one time
can be represented by the density ρ and the fluid velocity v. They satisfy Euler’s equation of
continuity

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.1)

Comparing this equation with (1.3), we are thus led to the following definition for the quantum
velocity of a state ψ(t, r):

v ≡ j(t, r)

|ψ(t, r)|2 (2.2)

in which j(t, r) is given by (1.2). It is stressed that this velocity is different from the eigenvalue
of the velocity operator v̂ = −i�∇/m, except for the cases where ψ(t, r) is an eigenfunction
of the momentum operator p̂ = −i�∇. Note that, if we can separate variables of ψ(t, r), then
v does not contain the time t explicitly.

Equation (2.2) is justified from the following point of view. In semiclassical cases the
time-dependent wavefunction can be written [17–19]

ψ(t, r) = √
ρeiS/� (2.3)

where ρ is the probability density (1.1) and S is the quantum analogue of the classical action,
which is a real function of t and r. The velocity (2.2) gives

v = ∇S/m. (2.4)

The right-hand side is known just as the velocity in classical dynamics. Madelung [20]
introduced the velocity by this relation (2.4).

We shall now consider the vorticity in quantum mechanics. It is defined, as in
hydrodynamics, by

ω ≡ ∇ × v. (2.5)

With the above definition we have

ω = 0 (2.6)

for the domain in which the wavefunction does not have nodes. Using standard formulae of
vector analysis, equation (2.6) is verified with the help of (2.4), in semiclassical cases. However,
equation (2.6) does not hold when the velocity has singularities. From the definition (2.2), in
the nodal region where the wavefunction vanishes, a vortex may exist [29, 31]. The strength
of the vortex is characterized by the circulation round a closed contour C encircling the nodal
singularity

Γ ≡
∮
C

v · ds. (2.7)
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We make use of Stokes’ theorem,

Γ =
∫ ∫

S

ω · dS (2.8)

where S is a two-dimensional surface whose boundary is the closed contour C. The
wavefunction (2.3) is required to have a single value at each point, so the circulation (2.7)
becomes, with the help of (2.4) [29, 31, 39–41],

Γ = 2πn�/m (2.9)

where n is an integer. This result informs us that the circulations are quantized in units
of 2π�/m for the state (2.3) in semiclassical cases. Equation (2.9) is known as Onsager’s
quantization of circulations, in superfluidity [42, 43]. Examples of this quantized vortex will
be dealt with in section 4.1 and appendix A.

In hydrodynamics [36–38], the flow satisfying ω = 0 is called potential flow or irrotational
flow. Thus the result (2.6) asserts that the quantum flow is irrotational flow except for the nodal
singularities. The velocity in irrotational flow satisfying (2.6) may be described by the gradient
of the velocity potential Φ,

v = ∇Φ. (2.10)

Comparing this with (2.4), we see that

Φ = S/m (2.11)

in semiclassical cases. The right-hand side here is undefined to the extent of an arbitrary
additive real constant. On substituting (2.10) in (2.7), the circulation becomes

Γ = [Φ]C (2.12)

[Φ]C being the change inΦ round the closed contourC. Applied to the velocity potential (2.11)
it gives (2.9) again.

We now proceed to study only the two-dimensional or plane flow. Let us consider the
velocity (2.2) which is solenoidal, namely

∇ · v ≡ ∂vx

∂x
+
∂vy

∂y
= 0. (2.13)

The velocity in two-dimensional flow satisfying (2.13) may be described by the rotation of the
stream function Ψ ,

vx = ∂Ψ

∂y
vy = −∂Ψ

∂x
. (2.14)

The magnitude of the vorticity ω satisfies, with the help of (2.14),

ω = ∂vy

∂x
− ∂vx

∂y
= −∇2Ψ (2.15)

where ∇2 is written for the two-dimensional Laplacian operator ∂2/∂x2 + ∂2/∂y2. The
solenoidal condition (2.13) holds for incompressible fluids in hydrodynamics, since ρ is a
constant. In quantum mechanics, however, the probability density (1.1) depends generally on
r, so the velocity (2.2) is not always solenoidal.

Further, in the two-dimensional irrotational flow, by combining (2.14) with (2.10) we
obtain

vx = ∂Φ

∂x
= ∂Ψ

∂y
vy = ∂Φ

∂y
= −∂Ψ

∂x
.
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These are known as the Cauchy–Riemann equations between the velocity potential and the
stream function. We can therefore take the complex velocity potential

W(z) = Φ(x, y) + iΨ (x, y) (2.16)

which is a regular function of the complex variable z = x + iy. The differentiation of W(z)

gives us the complex velocity

dW

dz
= vx − ivy. (2.17)

In this way we know that in the two-dimensional irrotational flow it is advantageous to use the
theory of functions of a complex variable [36–38]. For example, the flow round the angle π/a
is expressed by the complex velocity potential [36–38]

W = Aza (2.18)

A being a number. With a = 1, this expresses the uniform flow of the two-dimensional
plane wave in quantum mechanics (section A.1 of appendix A). There are some elementary
examples of complex velocity potentials which express the two-dimensional flows in quantum
mechanics (see appendix A).

The above-mentioned method will be applied to the flows of the 2D PPB in section 4.

3. The 2D parabolic potential barrier

The Hamiltonian of the 2D isotropic PPB is

Ĥ = − �
2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ V0 − 1

2
mγ 2(x2 + y2) (3.1)

where V0 ∈ R is the maximum potential energy, m > 0 is the mass and γ > 0 is proportional
to the square root of the curvature at (x, y) = (0, 0).

A state is represented by a wavefunction U(x, y) satisfying the Schrödinger equation,
which now reads, with Ĥ given by (3.1),

− �
2

2m

(
∂2

∂x2
+

∂2

∂y2

)
U(x, y) +

{
V0 − 1

2
mγ 2(x2 + y2)

}
U(x, y) = EU(x, y). (3.2)

The energy eigenvalues of (3.2) will be the sum of the energy eigenvalues of the 1D PPB in
the x- and y-directions, respectively, i.e.

Enxny = Enx + Eny (3.3)

and the eigenfunctions belonging to these energy eigenvalues will be the product of their
corresponding eigenfunctions

Unxny (x, y) = unx (x)uny (y). (3.4)

With the notation of preceding papers [11,12], the energy eigenvalues of the 1D PPB are

E±
nx

= 1
2V0 ∓ i(nx + 1

2 )�γ (nx = 0, 1, 2, . . .) (3.5)

and the corresponding eigenfunctions are

u±
nx
(x) = e±iβ2x2/2H±

nx
(βx)

(
β ≡

√
mγ/�

)
(3.6)

whereH±
nx
(βx) are the polynomials of degree nx , and the numerical coefficients are discarded.

The eigenfunctions u±
nx

are generalized functions in S(R)× of the following Gel’fand triplet:

S(R) ⊂ L2(R) ⊂ S(R)× (3.7)
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where L2(R) is a Lebesgue space and S(R) is a Schwartz space. The paper [11] also shows
that the index + means only outward moving particles and the index − means only inward
moving particles.

Thus the results (3.3) and (3.4) of the 2D PPB separate into four types:

Type 1. E++
nxny

= E+
nx

+ E+
ny

= V0 − i(nx + ny + 1)�γ

U++
nxny

(x, y) = u+
nx
(x)u+

ny
(y) = e+iβ2(x2+y2)/2H +

nx
(βx)H +

ny
(βy).

Type 2. E+−
nxny

= E+
nx

+ E−
ny

= V0 − i(nx − ny)�γ

U+−
nxny

(x, y) = u+
nx
(x)u−

ny
(y) = e+iβ2(x2−y2)/2H +

nx
(βx)H−

ny
(βy).

Type 3. E−+
nxny

= E−
nx

+ E+
ny

= V0 + i(nx − ny)�γ

U−+
nxny

(x, y) = u−
nx
(x)u+

ny
(y) = e−iβ2(x2−y2)/2H−

nx
(βx)H +

ny
(βy).

Type 4. E−−
nxny

= E−
nx

+ E−
ny

= V0 + i(nx + ny + 1)�γ

U−−
nxny

(x, y) = u−
nx
(x)u−

ny
(y) = e−iβ2(x2+y2)/2H−

nx
(βx)H−

ny
(βy).

These eigenfunctions U++
nxny

, U+−
nxny

, U−+
nxny

and U−−
nxny

are also generalized functions in S(R2)
×

of the Gel’fand triplet

S(R2) ⊂ L2(R2) ⊂ S(R2)
×

(3.8)

instead of (3.7). Note that the eigenfunctions of types 4 and 3 are conjugate complex functions
of types 1 and 2, respectively, i.e.

U±±
nxny

(x, y)∗ = U∓∓
nxny

(x, y)

and

U±∓
nxny

(x, y)∗ = U∓±
nxny

(x, y).

3.1. Diverging and converging flows

Let us consider first types 1 and 4. In this case the energy eigenvaluesE±±
nxny

are always complex
numbers and the time factors corresponding to them are

e−iE±±
nxny

t/� = e−iV0t/�e∓(nx+ny+1)γ t .

Thus the solutions of type 1 are well defined when t > 0, and those of type 4 are well defined
when t < 0, according to the time boundary condition that time factors of an unstable system
are square integrable [11]. Also, U++

nxny
(x, y) represent particles moving outward from the

centre as in figure 1, and U−−
nxny

(x, y) represent particles moving inward to the centre as in
figure 2. Thus we shall call these types diverging and converging flows, respectively. Note
that a time reversal occurs, resulting in the interchange of the diverging and converging flows.

For nx = ny = 0, we obtain the energy eigenvalue

E±±
00 = V0 ∓ i�γ (3.9)

and only one eigenfunction

U±±
00 (x, y) = e±iβ2(x2+y2)/2 (3.10)

respectively. For nx + ny = 1, namely nx = 1, ny = 0 and nx = 0, ny = 1, we obtain

E±±
10 = E±±

01 = V0 ∓ 2i�γ (3.11)
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Figure 1. Diverging flows. Figure 2. Converging flows.

and two eigenfunctions

U±±
10 (x, y) = 2βxe±iβ2(x2+y2)/2

U±±
01 (x, y) = 2βye±iβ2(x2+y2)/2.

(3.12)

There is a twofold degenerate state of types 1 and 4 with nx +ny = 1. For nx +ny = 2, namely
nx = 2, ny = 0; nx = 1, ny = 1; nx = 0, ny = 2, we obtain

E±±
20 = E±±

11 = E±±
02 = V0 ∓ 3i�γ (3.13)

and three eigenfunctions

U±±
20 (x, y) = (4β2x2 ∓ 2i)e±iβ2(x2+y2)/2

U±±
11 (x, y) = 4β2xye±iβ2(x2+y2)/2

U±±
02 (x, y) = (4β2y2 ∓ 2i)e±iβ2(x2+y2)/2.

(3.14)

There is a threefold degenerate state of types 1 and 4 with nx + ny = 2. Generally, there is an
(n + 1)-fold degenerate state of types 1 and 4 with nx + ny = n. This result is just the same
degree of degeneracy as the 2D HO.

For the further discussion of the state of types 1 and 4, we now pass from the Cartesian
coordinates x, y to the two-dimensional polar coordinates ρ, ϕ by means of the equations

x = ρ cosϕ

y = ρ sin ϕ.
(3.15)

If in the new coordinates we superpose the above-mentioned eigenstates with suitable weights,
the result will be the eigenstates of orbital angular momentum L̂ defined by

L̂ = −i�

(
x
∂

∂y
− y

∂

∂x

)
= −i�

∂

∂ϕ
. (3.16)

For n ≡ nx + ny = 0, the eigenfunction (3.10) will be

U±±
00

(ρ, ϕ) ≡ U±±
00 (ρ, ϕ) = e±iβ2ρ2/2 (3.17)
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the suffixmn ofU±±
mn

being the eigenvalue of L̂/�. ThusU±±
00

(ρ, ϕ) is independent ofϕ and has
zero orbital angular momentum. For n = 1, a linear combination of the eigenfunctions (3.12)
gives

U±±
11

(ρ, ϕ) ≡ U±±
10 (ρ, ϕ) + iU±±

01 (ρ, ϕ) = 2βρe±iβ2ρ2/2eiϕ

U±±
−11

(ρ, ϕ) ≡ U±±
10 (ρ, ϕ) − iU±±

01 (ρ, ϕ) = 2βρe±iβ2ρ2/2e−iϕ.
(3.18)

These states are eigenstates of L̂ with eigenvalues � and −�, respectively. For n = 2, (3.14)
give

U±±
22

(ρ, ϕ) ≡ U±±
20 (ρ, ϕ) + 2iU±±

11 (ρ, ϕ) − U±±
02 (ρ, ϕ) = 4β2ρ2e±iβ2ρ2/2e2iϕ

U±±
02

(ρ, ϕ) ≡ U±±
20 (ρ, ϕ) + U±±

02 (ρ, ϕ) = 4(β2ρ2 ∓ i)e±iβ2ρ2/2

U±±
−22

(ρ, ϕ) ≡ U±±
20 (ρ, ϕ) − 2iU±±

11 (ρ, ϕ) − U±±
02 (ρ, ϕ) = 4β2ρ2e±iβ2ρ2/2e−2iϕ.

(3.19)

These states are also eigenstates of L̂ with eigenvalues 2�, 0 and −2�. Substituting these
eigenfunctions in (1.2), we obtain the two-dimensional polar coordinates j±±

mnρ
, j±±

mnϕ
of j±±

mn
,

which are the probability currents of the states U±±
mn

. The result is

j±±
00ρ

(t, ρ, ϕ) = ±e∓2γ tγρ j±±
00ϕ

(t, ρ, ϕ) = 0 (3.20)

j±±
11ρ

(t, ρ, ϕ) = ±4e∓4γ tγβ2ρ3 j±±
11ϕ

(t, ρ, ϕ) = 4e∓4γ tγρ

j±±
−11ρ

(t, ρ, ϕ) = ±4e∓4γ tγβ2ρ3 j±±
−11ϕ

(t, ρ, ϕ) = −4e∓4γ tγρ
(3.21)

j±±
22ρ

(t, ρ, ϕ) = ±16e∓6γ tγβ4ρ5 j±±
22ϕ

(t, ρ, ϕ) = 32e∓6γ tγβ2ρ3

j±±
02ρ

(t, ρ, ϕ) = ±16e∓6γ tγρ(β4ρ4 + 3) j±±
02ϕ

(t, ρ, ϕ) = 0

j±±
−22ρ

(t, ρ, ϕ) = ±16e∓6γ tγβ4ρ5 j±±
−22ϕ

(t, ρ, ϕ) = −32e∓6γ tγβ2ρ3.

(3.22)

Thus j±±
mn

depend on the time t . There is a similar procedure for large values of n.

3.2. Corner flows

Let us now study types 2 and 3. In this case the energy eigenvalues E±∓
nxny

are also in general
complex numbers, but with the striking difference that all the eigenstates belonging to each
energy eigenvalue are infinitely degenerate. The corresponding time factors are

e−iE±∓
nxny

t/� = e−iV0t/�e∓(nx−ny)γ t .

Thus the solutions of type 2 are well defined when t > 0, and those of type 3 are well defined
when t < 0, for the case of nx > ny , and vice versa. Also, U+−

nxny
(x, y) represent particles

which, coming from the y-direction, round the centre and go off to the x-direction as in figure 3,
and U−+

nxny
(x, y) represent particles which, coming from the x-direction, round the centre and

go off to the y-direction as in figure 4. Note that a time reversal occurs, resulting in the
interchange of these corner flows.

Stationary flows. The above time factors now show that for the case of nx = ny , there are
stationary flows. For nx = ny ≡ n = 0, 1, 2, . . . , the energy eigenvalues associated with
stationary flows are the same real number:

E±∓
nn = V0. (3.23)
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Figure 3. Corner flows moving from the y- to the x-
direction.

Figure 4. Corner flows moving from the x- to the y-
direction.

The first few infinitely degenerate eigenfunctions belonging to this energy eigenvalue (3.23)
are

U±∓
00 (x, y) = e±iβ2(x2−y2)/2

U±∓
11 (x, y) = 4β2xye±iβ2(x2−y2)/2

U±∓
22 (x, y) = 4[4β4x2y2 + 1 ± 2iβ2(x2 − y2)]e±iβ2(x2−y2)/2

. . . .

(3.24)

For the further study of the stationary flows of the 2D PPB with the Hamiltonian (3.1), it
is convenient to make a transformation to the rectangular hyperbolic coordinates u, v, given
by

u = x2 − y2

v = 2xy.
(3.25)

The eigenfunctions (3.24) will become in the new representation

U±∓
00 (u, v) = e±iβ2u/2

U±∓
11 (u, v) = 2β2ve±iβ2u/2

U±∓
22 (u, v) = 4(β4v2 + 1 ± 2iβ2u)e±iβ2u/2

. . . .

(3.26)

The factors e±iβ2u/2 occurring in (3.26) describe plane waves in the uv-plane, i.e. the motion
of the wave eiβ2u/2 is in the direction specified by figure 3 and that of the wave e−iβ2u/2 is in the
direction specified by figure 4. These eigenfunctions substituted in (1.2) give the rectangular
hyperbolic coordinates j±∓

nnu , j±∓
nnv of j±∓

nn , which are the probability currents of the states U±∓
nn .

They give

j±∓
00u (u, v) = ±γ hu/2 j±∓

00v (u, v) = 0
j±∓

11u (u, v) = ±2γβ4v2hu j±∓
11v (u, v) = 0

j±∓
22u (u, v) = ±8γ [(β4v2 + 5)(β4v2 + 1) + 4β4u2]hu
j±∓

22v (u, v) = ∓64γβ4uvhv

. . .

(3.27)
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where the scale factors hu = hv = 2 4
√
u2 + v2. Thus j±∓

nn can never depend on the time t . We
see from this result the suitability of the term ‘stationary flows’.

4. Hydrodynamical formulation of the 2D parabolic potential barrier

In the present section we shall apply the hydrodynamical formulation of quantum mechanics
reviewed in section 2 to the 2D PPB flows dealt with in section 3, in section 4.1 the velocities
and the vortices of diverging and converging flows studied in section 3.1 and in section 4.2 the
velocities, the vortices and the complex velocity potentials of stationary flows as special cases
of corner flows studied in section 3.2.

4.1. Vortices of diverging and converging flows

The non-vanishing ϕ-components of the probability currents (3.21), the first and third of
equations (3.22), show that for the eigenstates of orbital angular momentum there are vortices
around the origin ρ = 0. Note that this point ρ = 0 is the node of the corresponding
wavefunctions (3.18), (3.19). To obtain an understanding of the physical features of these
vortices it is better to work with the velocity defined by (2.2) and the circulation defined
by (2.7). For the states (3.17)–(3.19), we obtain the following velocities:

v±±
00ρ

= ±γρ v±±
00ϕ

= 0 (4.1)

v±±
11ρ

= ±γρ v±±
11ϕ

= �

mρ

v±±
−11ρ

= ±γρ v±±
−11ϕ

= − �

mρ

(4.2)

v±±
22ρ

= ±γρ v±±
22ϕ

= 2�

mρ

v±±
02ρ

= ±γρ
β4ρ4+3
β4ρ4+1 v±±

02ϕ
= 0

v±±
−22ρ

= ±γρ v±±
−22ϕ

= − 2�

mρ
.

(4.3)

Note that the nodes of (3.17)–(3.19) go over into the singularities of the corresponding ϕ-
components of the above velocities. Now the circulation (2.7), round a closed contour C
encircling the singularity at the origin ρ = 0, reads

Γ ±±
mn

=
∮
C

v±±
mnϕ

ds. (4.4)

On substituting (4.1)–(4.3) in (4.4) we obtain the following formula:

Γ ±±
mn

= 2π
mn�

m
(4.5)

wheremn on the right-hand side of (4.5) is one of the values n, n−2, n−4, . . . ,−n. These are
in agreement with expression (2.9) of section 2, and they show that, for the eigenstates (3.17)–
(3.19) of orbital angular momentum, the circulations of the 2D PPB are quantized. One could
make calculations for large values of n and one would be led to the same results.

Comparing (4.5) with (A.14) of appendix A, we see that the vorticities of these states must
be of the form (A.11). This leads to the result that the velocity potentials of the form (A.12)
can exist except the singularity ρ = 0. However, the stream functions of these states do not
exist, since the velocities (4.1)–(4.3) cannot be solenoidal. As an example we try to calculate
the divergence (2.13) for (4.1). The result is

∇ · v±±
00

≡ 1

ρ

∂

∂ρ
(ρv±±

00ρ
) +

1

ρ

∂

∂ϕ
v±±

00ϕ
= ±2γ �= 0.



Stationary flows of the parabolic potential barrier in two dimensions 7647

Now the ± sign shows that U++
00

is connected with the diverging flow and U−−
00

is connected
with the converging one. This result follows from the fact that the probability densities of
these flows depend on t in (2.1). Therefore we cannot obtain the complex velocity potentials
defined by (2.16). This result also holds for large values of n.

4.2. Vortices and complex velocity potentials of stationary flows

Taking into account that a node of the wavefunction ψ(t, r) derives a singularity of the
velocity (2.2) of section 2 which is divided by |ψ(t, r)|2, one may consider that vortices
exist at the nodal singularities of the wavefunction [29, 31]. As noted in section 3.2, the
solutions involving the stationary states are infinitely degenerate. One can therefore make
up the wavefunction which has a countable number of nodes at any points in terms of the
superposition of the infinitely degenerate states.

Complex velocity potentials of stationary flows. The probability currents (3.27) now show
that, for the case of n = 0 and 1, there are stationary flows which move along the hyperbolae
(each line with v constant). To obtain an understanding of the physical features of these flows
it is better to work with the velocity defined by (2.2) and the complex velocity potential defined
by (2.16). For n = 0 and 1, the velocities give the same result

v±∓
u = ± 1

2γ hu v±∓
v = 0. (4.6)

Note that the nodal singularity v = 0 of the second of equations (3.26) does not appear in these
velocities. Thus we can take their rotation, so that we obtain the vorticity (2.5)

ω±∓ ≡ huhv

[
∂

∂u

(
v±∓
v

hv

)
− ∂

∂v

(
v±∓
u

hu

)]
= 0.

These equations are the general result (2.6), and therefore the velocity potentials defined
by (2.10) must exist. If we transform to rectangular hyperbolic coordinates u, v,
equations (2.10) become

vu = hu
∂Φ

∂u
vv = hv

∂Φ

∂v
(4.7)

and the velocity potentials for n = 0 and 1 are thus

Φ±∓ = ± 1
2γ u. (4.8)

Note that they are proportional to the phase factors of (3.26). Further, the divergence (2.13)
gives

∇ · v±∓ ≡ huhv

[
∂

∂u

(
v±∓
u

hv

)
+

∂

∂v

(
v±∓
v

hu

)]
= 0.

Thus the velocities (4.6) are solenoidal, so we can obtain the stream functions defined by (2.14).
The equations (2.14) are also expressed, as in equations (4.7),

vu = hv
∂Ψ

∂v
vv = −hu

∂Ψ

∂u
(4.9)

and the stream functions for n = 0 and 1 are thus

Ψ ±∓ = ± 1
2γ v. (4.10)

Substituting (4.10) into (2.15) we obtain ω±∓ = 0 again. For the states represented by the
first and second of equations (3.26), the complex velocity potential (2.16) gives, from (4.8)
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and (4.10),

W±∓ = ±1

2
γ u ± i

2
γ v

= ± 1
2γ z

2 (4.11)

since z2 = u + iv. Equations (4.11) are of the form (2.18) with a = 2, and they show that,
for the stationary states (3.26) with n = 0 and 1, the complex velocity potentials of the 2D
PPB express the flows round a right angle. One could make calculations in terms of Cartesian
coordinates and one would be led to the same conclusion.

5. Discussion

We have obtained the exact solutions of the 2D PPB. One class of the solutions is the
diverging and converging flows of section 3.1. These solutions always have complex energy
eigenvalues and are expressed by generalized eigenfunctions, which mean that the diverging
and converging flows are not stationary. These generalized eigenfunctions can be obtained
from the eigenfunctions (A.5) of the 2D HO by the analytical continuation, in the same way
as the 1D PPB [11]. Again, they can be superposed to give the eigenstates of orbital angular
momentum.

The other class of the solutions is the corner flows of section 3.2. All the solutions are
infinitely degenerate and involve stationary flows with a real energy eigenvalue. It should be
noted that there are no stationary flows in the 1D or 3D isotropic PPB. For n = 0 and 1 in the
stationary flows, we have found the flows round a right angle that are expressed by the complex
velocity potentials (4.11) of section 4.2, but for n � 2 the complex velocity potentials do not
exist, because the imaginary parts of the polynomials H±

nx
(βx) in (3.6) cause the streamlines

to depart from hyperbolae. One may, however, find a new flow as the result of a kind of
superposition of the infinitely degenerate states.

One would expect to be able to obtain a more direct solution of the eigenvalue problem of
the Hamiltonian (3.1) by working all the time in the two-dimensional polar coordinates, instead
of working in the Cartesian coordinates and transforming at the end to the two-dimensional
polar coordinates, as was done in section 3.1, but under suitable boundary conditions in the
two-dimensional polar coordinates one would obtain only the diverging and converging flows
of section 3.1, i.e. not the corner flows of section 3.2. It is also pointed out that one can obtain
only the diverging and converging flows from the analytical continuation of the solutions of
the 2D HO. These facts mean that the choice of coordinate systems is quite important in
the eigenvalue problem of the unstable system in non-relativistic quantum mechanics, since
coordinate systems impose a restriction on the symmetry of boundary conditions. The source
of this conclusion lies in the existence of a very large class of solutions for the unstable system.

In the discussion from the hydrodynamical point of view carried out in section 4 the
velocity plays an important role, more than the probability current does. Remembering the
definition of the velocity (2.2) and also comparing the velocities of (4.1)–(4.3) and (4.6) with
the probability currents of (3.20)–(3.22) and (3.27), we see that the velocities have the following
two advantages over the probability currents: the first one is the fact that the velocity has no
ambiguity arising from the normalization of the states, while the probability currents cannot
avoid it. The second is that the velocity does not depend on the time t even for the non-stationary
states, whereas the probability current generally depends on t . It is important that the velocity
can be a good observable in these quantum processes, since it has no time dependence. It
should also be noticed that the velocities given by (4.1) and (4.6) do not contain any order of
� at all. This fact indicates that these flows will have a kind of classical property. Actually
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from the existence of the stationary flows having a kind of classical property, we have pointed
out in another paper [44, 45] that the dynamical system composed of several of these PPBs
forms the quasi-stable semiclassical system. In the new scheme for Gel’fand triplet [44] the
infinite degeneracy can possibly play an essential role in energy and entropy productions in
thermodynamical processes [45]. As noticed at the beginning of section 4.2, those stationary
flows with infinite degeneracy can also be the origin of many variety of vortices in two-
dimensional space. The study of the vortex structures and motions will open new physical
applications in the present model. Furthermore the hydrodynamical approach, in terms of
the velocity, vorticity, complex velocity potential and so on, will give us a clearer insight
for understanding the quantum flows of PPB. On the other hand the non-stationary solutions
will possibly describe growing and decaying vortices, which are also interesting objects to
investigate further. We will also be able to describe the time evolution of vortex structures in
terms of appropriate superposition of solutions of Gel’fand triplets. It will be an interesting
theme to study the hydrodynamical aspect more precisely in the present scheme.

Appendix A. Elementary applications

A.1. The free particle

Let us first consider the free particle in two dimensions as an example of a stationary state.
The plane wave is of the form

upxpy (x, y) = aei(pxx+pyy)/� (A.1)

where a is independent of t , x and y. The probability current of the plane wave is

jx(x, y) = |a|2px/m jy(x, y) = |a|2py/m
and hence their velocity is

vx = px/m vy = py/m.

Equations (2.6) and (2.13) are easily seen to hold for the plane wave. Therefore the velocity
potential satisfying (2.10) or (2.11) of the plane wave is

Φ = (pxx + pyy)/m (A.2)

and the stream function satisfying (2.14) is

Ψ = (pxy − pyx)/m. (A.3)

For the state represented by (A.1), the complex velocity potential (2.16) gives, from (A.2)
and (A.3),

W = (pxx + pyy)/m + i(pxy − pyx)/m

= (px − ipy)z/m. (A.4)

Equation (A.4) is of the form (2.18) with a = 1, and it shows that the complex velocity potential
of the plane wave just expresses uniform flow.

A.2. The HO

We shall now consider the eigenstate of the 2D HO as an example of a closed state of the stable
system. The eigenfunction is, in terms of the Cartesian coordinates x, y,

unxny (x, y) = NnxNnye
−α2(x2+y2)/2Hnx (αx)Hny (αy)

(
α ≡

√
mω/�

)
(A.5)
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where Nnx , Nny are the normalizing constants. Since the Hermite polynomials Hnx (αx),
Hny (αy) are real functions of x, y, respectively the probability current of the HO vanishes
and their velocity also vanishes. Therefore the velocity potential and the stream function all
vanish. For the state represented by (A.5), the complex velocity potential gives

W = 0 (A.6)

which expresses fluid at rest in hydrodynamics. This fluid at rest, however, is not the only
one that is physically permissible for a closed state in quantum mechanics, as we can also
have flows which are vortical. For these flows the vorticity may contain singularities in the
xy-plane. Such flows will be dealt with in section A.3.

A.3. Flows in a central field of force

As a final example we shall consider the bound state in a certain central field of force. The
eigenfunction is, in terms of the polar coordinates r , θ , ϕ,

unlml
(r, θ, ϕ) = Rnl(r)Ylml

(θ, ϕ) (A.7)

where the spherical harmonics Ylml
(θ, ϕ) are of the form

Ylml
(θ, ϕ) = Clml

P
|ml |
l (cos θ)eimlϕ (A.8)

and Clml
are the normalizing constants. Since Rnl(r) for the bound state and the associated

Legendre polynomials P |ml |
l (cos θ) are real functions, the polar coordinates jr , jθ , jϕ of (1.2)

in a central field of force are

jr(r, θ, ϕ) = jθ (r, θ, ϕ) = 0 jϕ(r, θ, ϕ) = |unlml
(r, θ, ϕ)|2 ml�

mr sin θ
.

In consequence, a simple treatment becomes possible, namely, we may consider the velocity
for a definite direction θ and then we can introduce the radius ρ = r sin θ in the above equations
and obtain a problem in two degrees of freedom ρ, ϕ. The two-dimensional polar coordinates
vρ , vϕ of (2.2) give

vρ = 0 vϕ = ml�

mρ
.

Their divergence readily vanishes. If we transform to two-dimensional polar coordinates ρ,
ϕ, equations (2.14) become

vρ = 1

ρ

∂Ψ

∂ϕ
vϕ = −∂Ψ

∂ρ
(A.9)

and the stream function in a central field of force is thus

Ψ = −ml�

m
log ρ. (A.10)

On substituting (A.10) in (2.15) we obtain

ω = ml�

m
∇2 log ρ = 2π

ml�

m
δ(ρ) (A.11)

where δ(ρ) is the two-dimensional Dirac δ function. Thus the vorticity in a central field of force
vanishes everywhere except the origin ρ = 0. This singularity will lie along the quantization
axis θ = 0 and π in three-dimensional space. The velocity potential satisfying (2.10) or (2.11)
in a central field of force is

Φ = ml�

m
ϕ. (A.12)
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For the state represented by (A.7), the complex velocity potential (2.16) gives, from (A.12)
and (A.10),

W = ml�

m
ϕ − i

ml�

m
log ρ

= −i
ml�

m
log z (A.13)

since z = ρeiϕ . According to hydrodynamics [38], this expresses the vortex filament. The
strength of the vortex filament is defined by the circulation (2.7) round a closed contour C
encircling the singularity at the origin ρ = 0. On substituting (A.11) in (2.8) we obtain

Γ = 2π
ml�

m
(A.14)

where ml is an integer. This result is to be expected from (A.12) and (2.12). This is of exactly
the same form as (2.9), and it shows that the circulations are quantized for the state (A.7)
moving in a central field of force.
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